(x-3)^2/3+(x-3)^1/3-12=0

Simple and best practice solution for (x-3)^2/3+(x-3)^1/3-12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)^2/3+(x-3)^1/3-12=0 equation:


x in (-oo:+oo)

((x-3)^2)/3+((x-3)^1)/3-12 = 0

((x-3)^2)/3+(x-3)/3-12 = 0

((x-3)^2)/3+(x-3)/3+(-12*3)/3 = 0

(x-3)^2+x-12*3-3 = 0

x^2-5*x-36+6 = 0

x^2-5*x-30 = 0

x^2-5*x-30 = 0

x^2-5*x-30 = 0

DELTA = (-5)^2-(-30*1*4)

DELTA = 145

DELTA > 0

x = (145^(1/2)+5)/(1*2) or x = (5-145^(1/2))/(1*2)

x = (145^(1/2)+5)/2 or x = (5-145^(1/2))/2

(x-((5-145^(1/2))/2))*(x-((145^(1/2)+5)/2)) = 0

((x-((5-145^(1/2))/2))*(x-((145^(1/2)+5)/2)))/3 = 0

((x-((5-145^(1/2))/2))*(x-((145^(1/2)+5)/2)))/3 = 0 // * 3

(x-((5-145^(1/2))/2))*(x-((145^(1/2)+5)/2)) = 0

( x-((145^(1/2)+5)/2) )

x-((145^(1/2)+5)/2) = 0 // + (145^(1/2)+5)/2

x = (145^(1/2)+5)/2

( x-((5-145^(1/2))/2) )

x-((5-145^(1/2))/2) = 0 // + (5-145^(1/2))/2

x = (5-145^(1/2))/2

x in { (145^(1/2)+5)/2, (5-145^(1/2))/2 }

See similar equations:

| X/3+5=3X/2-1 | | 14n-93=49-57n | | 6x^2-x+12=0 | | 2x-3.9=x-35 | | 5/6x+1/12=-1/6x-1/6 | | 8=.0002x^2-.316x+127.9 | | -7x-2=-5x-.4 | | 2x+21=159 | | 7y^2+48y-7=0 | | 2x+8x=72 | | 2x-.5=x | | x+2x=9+x-1 | | 2(3.14)r^2+34(3.14)r=310 | | 5x-.8=x | | -5(7n-5)+4n= | | m-2n=164m+n=1 | | 8x+2+2x=3(x+10) | | 3x-6/2x=7 | | (x^2+x)/2=(3x+1)/9 | | x/2=9 | | X+16X^2+3X-4X^2-2=4X(3X-1)+5 | | 45c^2-320r^2=0 | | 0=x^2+5x-12 | | x-4+2(x+3)=10 | | 3/4=x/20 | | 235r+0.75=125r+1.63 | | X^3-2x^2+x-1=0 | | 7(a)-6=12(a-2) | | 0.7(0.1x+0.1)=-0.7 | | 0=6m^2+5mn-4n^2 | | 3x+25x-18=0 | | 10-4x=5(x-4) |

Equations solver categories